Show simple item record

dc.contributor.authorLippert, Christoph
dc.contributor.authorQuon, Gerald
dc.contributor.authorKang, Eun Yong
dc.contributor.authorKadie, Carl M.
dc.contributor.authorListgarten, Jennifer
dc.contributor.authorHeckerman, David
dc.date.accessioned2014-07-09T15:46:36Z
dc.date.available2014-07-09T15:46:36Z
dc.date.issued2013-05
dc.date.submitted2013-02
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/88234
dc.description.abstractApplications of linear mixed models (LMMs) to problems in genomics include phenotype prediction, correction for confounding in genome-wide association studies, estimation of narrow sense heritability, and testing sets of variants (e.g., rare variants) for association. In each of these applications, the LMM uses a genetic similarity matrix, which encodes the pairwise similarity between every two individuals in a cohort. Although ideally these similarities would be estimated using strictly variants relevant to the given phenotype, the identity of such variants is typically unknown. Consequently, relevant variants are excluded and irrelevant variants are included, both having deleterious effects. For each application of the LMM, we review known effects and describe new effects showing how variable selection can be used to mitigate them.en_US
dc.description.sponsorshipNational Institute on Aging (Brain eQTL Study (dbGaP phs000249.v1.p1))en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep01815en_US
dc.rightsCreative Commons Attribution-Non-Commercial-NoDerivs licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleThe benefits of selecting phenotype-specific variants for applications of mixed models in genomicsen_US
dc.typeArticleen_US
dc.identifier.citationLippert, Christoph, Gerald Quon, Eun Yong Kang, Carl M. Kadie, Jennifer Listgarten, and David Heckerman. “The Benefits of Selecting Phenotype-Specific Variants for Applications of Mixed Models in Genomics.” Sci. Rep. 3 (May 9, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorQuon, Geralden_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLippert, Christoph; Quon, Gerald; Kang, Eun Yong; Kadie, Carl M.; Listgarten, Jennifer; Heckerman, Daviden_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1716-0153
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record