Show simple item record

dc.contributor.authorPeherstorfer, Benjamin
dc.contributor.authorButnaru, Daniel
dc.contributor.authorWillcox, Karen E.
dc.contributor.authorBungartz, Hans-Joachim
dc.date.accessioned2014-07-10T13:31:03Z
dc.date.available2014-07-10T13:31:03Z
dc.date.issued2014-02
dc.date.submitted2013-11
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.urihttp://hdl.handle.net/1721.1/88242
dc.description.abstractThis paper presents a new approach to construct more efficient reduced-order models for nonlinear partial differential equations with proper orthogonal decomposition and the discrete empirical interpolation method (DEIM). Whereas DEIM projects the nonlinear term onto one global subspace, our localized discrete empirical interpolation method (LDEIM) computes several local subspaces, each tailored to a particular region of characteristic system behavior. Then, depending on the current state of the system, LDEIM selects an appropriate local subspace for the approximation of the nonlinear term. In this way, the dimensions of the local DEIM subspaces, and thus the computational costs, remain low even though the system might exhibit a wide range of behaviors as it passes through different regimes. LDEIM uses machine learning methods in the offline computational phase to discover these regions via clustering. Local DEIM approximations are then computed for each cluster. In the online computational phase, machine-learning-based classification procedures select one of these local subspaces adaptively as the computation proceeds. The classification can be achieved using either the system parameters or a low-dimensional representation of the current state of the system obtained via feature extraction. The LDEIM approach is demonstrated for a reacting flow example of an H[subscript 2]-Air flame. In this example, where the system state has a strong nonlinear dependence on the parameters, the LDEIM provides speedups of two orders of magnitude over standard DEIM.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (MURI program on Uncertainty Quantification under grant FA9550-09-0613)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (MIT-Germany Seed Fund)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/130924408en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleLocalized Discrete Empirical Interpolation Methoden_US
dc.typeArticleen_US
dc.identifier.citationPeherstorfer, Benjamin, Daniel Butnaru, Karen Willcox, and Hans-Joachim Bungartz. “Localized Discrete Empirical Interpolation Method.” SIAM Journal on Scientific Computing 36, no. 1 (February 11, 2014): A168–A192. © 2014, Society for Industrial and Applied Mathematics.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorWillcox, Karen E.en_US
dc.relation.journalSIAM Journal on Scientific Computingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPeherstorfer, Benjamin; Butnaru, Daniel; Willcox, Karen; Bungartz, Hans-Joachimen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record