MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Dimensional Reduction Approach Based on the Application of Reduced Basis Methods in the Framework of Hierarchical Model Reduction

Author(s)
Ohlberger, Mario; Smetana, Kathrin
Thumbnail
DownloadOhlberger-2014-A dimensional reduct.pdf (2.798Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this article we introduce a new dimensional reduction approach which is based on the application of reduced basis (RB) techniques in the hierarchical model reduction (HMR) framework. Considering problems that exhibit a dominant spatial direction, the idea of HMR is to perform a Galerkin projection onto a reduced space, which combines the full solution space in the dominant direction with a reduction space in the transverse direction. The latter is spanned by modal orthonormal basis functions. While so far the basis functions in the HMR approach have been chosen a priori [S. Perotto, A. Ern, and A. Veneziani, Multiscale Model. Simul., 8 (2010), pp. 1102--1127], for instance, as Legendre or trigonometric polynomials, in this work a highly nonlinear approximation is employed for the construction of the reduction space. To this end we first derive a lower dimensional parametrized problem in the transverse direction from the full problem where the parameters reflect the influence from the unknown solution in the dominant direction. Exploiting the good approximation properties of RB methods, we then construct a reduction space by applying a proper orthogonal decomposition to a set of snapshots of the parametrized partial differential equation. For an efficient construction of the snapshot set we apply adaptive refinement in parameter space based on an a posteriori error estimate that is also derived in this article. We introduce our method for general elliptic problems such as advection-diffusion equations in two space dimensions. Numerical experiments demonstrate a fast convergence of the proposed dimensionally reduced approximation to the solution of the full dimensional problem and the computational efficiency of our new adaptive approach.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/88243
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Ohlberger, Mario, and Kathrin Smetana. “A Dimensional Reduction Approach Based on the Application of Reduced Basis Methods in the Framework of Hierarchical Model Reduction.” SIAM Journal on Scientific Computing 36, no. 2 (January 2014): A714–A736. © 2014, Society for Industrial and Applied Mathematics.
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.