Show simple item record

dc.contributor.authorDas, Dipanjan
dc.contributor.authorChen, Desai
dc.contributor.authorMartins, André F. T.
dc.contributor.authorSchneider, Nathan
dc.contributor.authorSmith, Noah A.
dc.date.accessioned2014-07-17T13:28:15Z
dc.date.available2014-07-17T13:28:15Z
dc.date.issued2014-03
dc.date.submitted2012-11
dc.identifier.issn0891-2017
dc.identifier.issn1530-9312
dc.identifier.urihttp://hdl.handle.net/1721.1/88418
dc.description.abstractFrame semantics is a linguistic theory that has been instantiated for English in the FrameNet lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model that takes lexical targets (i.e., content words and phrases) in their sentential contexts and predicts frame-semantic structures. Given a target in context, the first stage disambiguates it to a semantic frame. This model uses latent variables and semi-supervised learning to improve frame disambiguation for targets unseen at training time. The second stage finds the target's locally expressed semantic arguments. At inference time, a fast exact dual decomposition algorithm collectively predicts all the arguments of a frame at once in order to respect declaratively stated linguistic constraints, resulting in qualitatively better structures than naïve local predictors. Both components are feature-based and discriminatively trained on a small set of annotated frame-semantic parses. On the SemEval 2007 benchmark data set, the approach, along with a heuristic identifier of frame-evoking targets, outperforms the prior state of the art by significant margins. Additionally, we present experiments on the much larger FrameNet 1.5 data set. We have released our frame-semantic parser as open-source software.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA grant NBCH-1080004)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant IIS-0836431)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant IIS-0915187)en_US
dc.description.sponsorshipQatar National Research Fund (NPRP 08-485-1-083)en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/COLI_a_00163en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Pressen_US
dc.titleFrame-Semantic Parsingen_US
dc.typeArticleen_US
dc.identifier.citationDas, Dipanjan, Desai Chen, André F. T. Martins, Nathan Schneider, and Noah A. Smith. “Frame-Semantic Parsing.” Computational Linguistics 40, no. 1 (March 2014): 9–56.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorChen, Desaien_US
dc.relation.journalComputational Linguisticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDas, Dipanjan; Chen, Desai; Martins, André F. T.; Schneider, Nathan; Smith, Noah A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2336-6235
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record