Show simple item record

dc.contributor.authorYankowitz, Matthew
dc.contributor.authorWang, Joel I-Jan
dc.contributor.authorBirdwell, A. Glen
dc.contributor.authorChen, Yu-An
dc.contributor.authorWatanabe, K.
dc.contributor.authorTaniguchi, T.
dc.contributor.authorJacquod, Philippe
dc.contributor.authorSan-Jose, Pablo
dc.contributor.authorJarillo-Herrero, Pablo
dc.contributor.authorLeRoy, Brian J.
dc.date.accessioned2014-07-22T15:24:18Z
dc.date.available2014-07-22T15:24:18Z
dc.date.issued2014-04
dc.date.submitted2013-12
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/88468
dc.description.abstractThe crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition that is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) that exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon–carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free-energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favoured as the electric field increases. This ability to control the stacking order in graphene opens the way to new devices that combine structural and electrical properties.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Division of Materials Sciences and Engineering (Award DE-SC0001819)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award DMR-0845287)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative. Graphene Approaches to Terahertz Electronicsen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat3965en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleElectric field control of soliton motion and stacking in trilayer grapheneen_US
dc.typeArticleen_US
dc.identifier.citationYankowitz, Matthew, Joel I-Jan Wang, A. Glen Birdwell, Yu-An Chen, K. Watanabe, T. Taniguchi, Philippe Jacquod, Pablo San-Jose, Pablo Jarillo-Herrero, and Brian J. LeRoy. “Electric Field Control of Soliton Motion and Stacking in Trilayer Graphene.” Nature Materials (April 28, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorWang, Joel I-Janen_US
dc.contributor.mitauthorChen, Yu-Anen_US
dc.contributor.mitauthorJarillo-Herrero, Pabloen_US
dc.relation.journalNature Materialsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsYankowitz, Matthew; Wang, Joel I-Jan; Birdwell, A. Glen; Chen, Yu-An; Watanabe, K.; Taniguchi, T.; Jacquod, Philippe; San-Jose, Pablo; Jarillo-Herrero, Pablo; LeRoy, Brian J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8217-8213
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record