MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry

Author(s)
Dai, Ning; Rapley, Joseph; Angel, Matthew; Yanik, Mehmet Fatih; Blower, Michael D.; Avruch, Joseph; ... Show more Show less
Thumbnail
DownloadDai-2011-mTOR phosphorylates.pdf (1022.Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Article is available under a Creative Commons license; see publisher’s site for details. http://creativecommons.org/
Metadata
Show full item record
Abstract
Variants in the IMP2 (insulin-like growth factor 2 [IGF2] mRNA-binding protein 2) gene are implicated in susceptibility to type 2 diabetes. We describe the ability of mammalian target of rapamycin (mTOR) to regulate the cap-independent translation of IGF2 mRNA through phosphorylation of IMP2, an oncofetal RNA-binding protein. IMP2 is doubly phosphorylated in a rapamycin-inhibitable, amino acid-dependent manner in cells and by mTOR in vitro. Double phosphorylation promotes IMP2 binding to the IGF2 leader 3 mRNA 5′ untranslated region, and the translational initiation of this mRNA through eIF-4E- and 5′ cap-independent internal ribosomal entry. Unexpectedly, the interaction of IMP2 with mTOR complex 1 occurs through mTOR itself rather than through raptor. Whereas depletion of mTOR strongly inhibits IMP2 phosphorylation in cells, comparable depletion of raptor has no effect; moreover, the ability of mTOR to phosphorylate IMP2 in vitro is unaffected by the elimination of raptor. Dual phosphorylation of IMP2 at the mTOR sites is evident in the mouse embryo, likely coupling nutrient sufficiency to IGF2 expression and fetal growth. Doubly phosphorylated IMP2 is also widely expressed in adult tissues, including islets of Langerhans.
Date issued
2011-05
URI
http://hdl.handle.net/1721.1/88501
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Genes & Development
Publisher
Cold Spring Harbor Laboratory Press
Citation
Dai, N., J. Rapley, M. Angel, M. F. Yanik, M. D. Blower, and J. Avruch. “mTOR Phosphorylates IMP2 to Promote IGF2 mRNA Translation by Internal Ribosomal Entry.” Genes & Development 25, no. 11 (June 1, 2011): 1159–1172.
Version: Final published version
ISSN
0890-9369

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.