Show simple item record

dc.contributor.authorWukitch, Stephen James
dc.contributor.authorBrunner, Daniel Frederic
dc.contributor.authorEnnever, Paul Chappell
dc.contributor.authorGarrett, Michael L.
dc.contributor.authorHubbard, Amanda E.
dc.contributor.authorLabombard, Brian
dc.contributor.authorLau, C.
dc.contributor.authorLin, Yijun
dc.contributor.authorLipschultz, Bruce
dc.contributor.authorMiller, D.
dc.contributor.authorOchoukov, Roman Igorevitch
dc.contributor.authorPorkolab, Miklos
dc.contributor.authorReinke, Matthew Logan
dc.contributor.authorTerry, James L.
dc.date.accessioned2014-08-05T14:39:13Z
dc.date.available2014-08-05T14:39:13Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/1721.1/88535
dc.description.abstractImpurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (DOE award DE-FC02-99ER54512)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Fusion Energy Postdoctoral Research Program administered by ORISE)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4864504en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAssessment of a field-aligned ICRF antennaen_US
dc.typeArticleen_US
dc.identifier.citationWukitch, S. J., D. Brunner, P. Ennever, M. L. Garrett, A. Hubbard, B. Labombard, C. Lau, et al. “Assessment of a Field-Aligned ICRF Antenna” AIP Conference Proceedings, 1580, 73 (2014) p.73-80.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorWukitch, Stephen Jamesen_US
dc.contributor.mitauthorBrunner, Daniel Fredericen_US
dc.contributor.mitauthorEnnever, Paul Chappellen_US
dc.contributor.mitauthorGarrett, Michael L.en_US
dc.contributor.mitauthorHubbard, Amanda E.en_US
dc.contributor.mitauthorLabombard, Brianen_US
dc.contributor.mitauthorLau, C.en_US
dc.contributor.mitauthorLin, Yijunen_US
dc.contributor.mitauthorLipschultz, Bruceen_US
dc.contributor.mitauthorMiller, D.en_US
dc.contributor.mitauthorOchoukov, Roman Igorevitchen_US
dc.contributor.mitauthorPorkolab, Miklosen_US
dc.contributor.mitauthorReinke, Matthew Loganen_US
dc.contributor.mitauthorTerry, James L.en_US
dc.relation.journalAIP Conference Proceedingsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3234-8733
dc.identifier.orcidhttps://orcid.org/0000-0002-9518-4097
dc.identifier.orcidhttps://orcid.org/0000-0002-8753-1124
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-9261
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record