MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver

Author(s)
Naba, Alexandra; Clauser, Karl R.; Whittaker, Charles A.; Carr, Steven A.; Tanabe, Kenneth K.; Hynes, Richard O; ... Show more Show less
Thumbnail
Download1471-2407-14-518.pdf (1.501Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Background: Colorectal cancer is the third most frequently diagnosed cancer and the third cause of cancer deaths in the United States. Despite the fact that tumor cell-intrinsic mechanisms controlling colorectal carcinogenesis have been identified, novel prognostic and diagnostic tools as well as novel therapeutic strategies are still needed to monitor and target colon cancer progression. We and others have previously shown, using mouse models, that the extracellular matrix (ECM), a major component of the tumor microenvironment, is an important contributor to tumor progression. In order to identify candidate biomarkers, we sought to define ECM signatures of metastatic colorectal cancers and their metastases to the liver. Methods: We have used enrichment of extracellular matrix (ECM) from human patient samples and proteomics to define the ECM composition of primary colon carcinomas and their metastases to liver in comparison with normal colon and liver samples. Results: We show that robust signatures of ECM proteins characteristic of each tissue, normal and malignant, can be defined using relatively small samples from small numbers of patients. Comparisons with gene expression data from larger cohorts of patients confirm the association of subsets of the proteins identified by proteomic analysis with tumor progression and metastasis. Conclusions: The ECM protein signatures of metastatic primary colon carcinomas and metastases to liver defined in this study, offer promise for development of diagnostic and prognostic signatures of metastatic potential of colon tumors. The ECM proteins defined here represent candidate serological or tissue biomarkers and potential targets for imaging of occult metastases and residual or recurrent tumors and conceivably for therapies. Furthermore, the methods described here can be applied to other tumor types and can be used to investigate other questions such as the role of ECM in resistance to therapy.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/88601
Department
Massachusetts Institute of Technology. Department of Biology; Koch Institute for Integrative Cancer Research at MIT
Journal
BMC Cancer
Publisher
BioMed Central Ltd.
Citation
Naba, Alexandra, Karl R. Clauser, Charles A. Whittaker, Steven A. Carr, Kenneth K. Tanabe, and Richard O. Hynes. "Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver." BMC Cancer 2014, 14:518 (18 July 2014).
Version: Final published version
ISSN
1471-2407

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.