Show simple item record

dc.contributor.authorLin, Zin
dc.contributor.authorAlcorn, Thomas
dc.contributor.authorLoncar, Marko
dc.contributor.authorJohnson, Steven G.
dc.contributor.authorRodriguez, Alejandro W.
dc.date.accessioned2014-08-08T17:09:32Z
dc.date.available2014-08-08T17:09:32Z
dc.date.issued2014-05
dc.date.submitted2014-03
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/88624
dc.description.abstractUsing a combination of temporal coupled-mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of all-resonant four-wave mixing processes and demonstrate the possibility of achieving high-efficiency limit cycles and steady states that lead to ≈100% depletion of the incident light at low input (critical) powers. Our analysis extends previous predictions to capture important effects associated with losses, self- and cross-phase modulation, and imperfect frequency matching (detuning) of the cavity frequencies. We find that maximum steady-state conversion is hypersensitive to frequency mismatch, resulting in high-efficiency limit cycles that arise from the presence of a homoclinic bifurcation in the solution phase space, but that a judicious choice of incident frequencies and input powers, in conjuction with self-phase and cross-phase modulation, can restore high-efficiency steady-state conversion even for large frequency mismatch. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low ∼50mW input powers in silicon micrometer-scale PhC nanobeam cavities.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Undergraduate Research Opportunities Programen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.89.053839en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleHigh-efficiency degenerate four-wave mixing in triply resonant nanobeam cavitiesen_US
dc.typeArticleen_US
dc.identifier.citationLin, Zin, Thomas Alcorn, Marko Loncar, Steven G. Johnson, and Alejandro W. Rodriguez. “High-Efficiency Degenerate Four-Wave Mixing in Triply Resonant Nanobeam Cavities.” Phys. Rev. A 89, no. 5 (May 2014). © 2014 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAlcorn, Thomasen_US
dc.contributor.mitauthorJohnson, Steven G.en_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2014-07-23T20:48:18Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsLin, Zin; Alcorn, Thomas; Loncar, Marko; Johnson, Steven G.; Rodriguez, Alejandro W.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7327-4967
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record