MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-consistent tomography of the state-measurement Gram matrix

Author(s)
Stark, Cyril
Thumbnail
DownloadPhysRevA.89.052109.pdf (200.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
State and measurement tomography make assumptions about the experimental states or measurements. These assumptions are often not justified because state preparation and measurement errors are unavoidable in practice. Here we describe how the Gram matrix associated with the states and measurement operators can be estimated via semidefinite programming if the states and the measurements are so-called globally completable. This is, for instance, the case if the unknown measurements are known to be projective and nondegenerate. The computed Gram matrix determines the states, and the measurement operators uniquely up to simultaneous rotations in the space of Hermitian matrices. We prove the reliability of the proposed method in the limit of a large number of independent measurement repetitions.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/88634
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physical Review A
Publisher
American Physical Society
Citation
Stark, Cyril. “Self-Consistent Tomography of the State-Measurement Gram Matrix.” Phys. Rev. A 89, no. 5 (May 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.