Show simple item record

dc.contributor.authorLow, Guang Hao
dc.contributor.authorYoder, Theodore James
dc.contributor.authorChuang, Isaac L.
dc.date.accessioned2014-08-11T13:14:33Z
dc.date.available2014-08-11T13:14:33Z
dc.date.issued2014-06
dc.date.submitted2014-02
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/88648
dc.description.abstractPerforming exact inference on Bayesian networks is known to be #P-hard. Typically approximate inference techniques are used instead to sample from the distribution on query variables given the values e of evidence variables. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time O(nmP(e)[superscript −1]), depending critically on P(e), the probability that the evidence might occur in the first place. By implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking O(n2[superscript m]P(e)[superscript −1/2]) time per sample. We exploit the Bayesian network's graph structure to efficiently construct a quantum state, a q-sample, representing the intended classical distribution, and also to efficiently apply amplitude amplification, the source of our speedup. Thus, our speedup is notable as it is unrelativized—we count primitive operations and require no blackbox oracle queries.en_US
dc.description.sponsorshipUnited States. Army Research Office (Project W911NF1210486)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Integrative Graduate Education and Research Traineeshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Center for Ultracold Atomsen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.89.062315en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleQuantum inference on Bayesian networksen_US
dc.typeArticleen_US
dc.identifier.citationLow, Guang Hao, Theodore J. Yoder, and Isaac L. Chuang. “Quantum Inference on Bayesian Networks.” Phys. Rev. A 89, no. 6 (June 2014). © 2014 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLow, Guang Haoen_US
dc.contributor.mitauthorYoder, Theodore Jamesen_US
dc.contributor.mitauthorChuang, Isaac L.en_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2014-07-23T20:47:47Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsLow, Guang Hao; Yoder, Theodore J.; Chuang, Isaac L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7296-523X
dc.identifier.orcidhttps://orcid.org/0000-0002-6211-982X
dc.identifier.orcidhttps://orcid.org/0000-0001-9614-2836
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record