MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surface of glassy GeS[subscript 2]: A model based on a first-principles approach

Author(s)
Massobrio, C.; Bouzid, A.; Boero, M.; Ori, Guido; Coasne, Benoit Alain
Thumbnail
DownloadPhysRevB.90.045423.pdf (1.200Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
First-principles calculations within the framework of the density functional theory are used to construct realistic models for the surface of glassy GeS[subscript 2](g−GeS[subscript 2]). Both calculations at T = 0 K and at finite temperature (T = 300 K) are considered. This allows for a comparison between the structural and electronic properties of surface and bulk g−GeS[subscript 2]. Although the g−GeS[subscript 2] surface recovers the main tetrahedral structural motif of bulk g−GeS[subscript 2], the number of fourfold coordinated Ge atoms and twofold coordinated S atoms is smaller than in the bulk. On the contrary, the surface system features a larger content of overcoordinated S atoms and threefold coordinated Ge atoms. This effect is more important for the g−GeS[subscript 2] surface relaxed at 0 K. Maximally localized Wannier functions (WF) are used to inspect the nature of the chemical bonds of the structural units present at the g−GeS[subscript 2] surface. We compare the ability of several charge derivation methods to capture the atomic charge variations induced by a coordination change. Our estimate for the charges allows exploiting the first-principles results as a data base to construct a reliable interatomic force field.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/88660
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Ori, G., C. Massobrio, A. Bouzid, M. Boero, and B. Coasne. “Surface of Glassy GeS[subscript 2]: A Model Based on a First-Principles Approach.” Phys. Rev. B 90, no. 4 (July 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.