Show simple item record

dc.contributor.authorKilchherr, F.
dc.contributor.authorDietz, H.
dc.contributor.authorKim, Do-Nyun
dc.contributor.authorBathe, Mark
dc.date.accessioned2014-08-13T14:23:43Z
dc.date.available2014-08-13T14:23:43Z
dc.date.issued2011-12
dc.date.submitted2011-11
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/88694
dc.description.abstractDNA nanotechnology enables the programmed synthesis of intricate nanometer-scale structures for diverse applications in materials and biological science. Precise control over the 3D solution shape and mechanical flexibility of target designs is important to achieve desired functionality. Because experimental validation of designed nanostructures is time-consuming and cost-intensive, predictive physical models of nanostructure shape and flexibility have the capacity to enhance dramatically the design process. Here, we significantly extend and experimentally validate a computational modeling framework for DNA origami previously presented as CanDo [Castro,C.E., Kilchherr,F., Kim,D.-N., Shiao,E.L., Wauer,T., Wortmann,P., Bathe,M., Dietz,H. (2011) A primer to scaffolded DNA origami. Nat. Meth., 8, 221–229.]. 3D solution shape and flexibility are predicted from basepair connectivity maps now accounting for nicks in the DNA double helix, entropic elasticity of single-stranded DNA, and distant crossovers required to model wireframe structures, in addition to previous modeling (Castro,C.E., et al.) that accounted only for the canonical twist, bend and stretch stiffness of double-helical DNA domains. Systematic experimental validation of nanostructure flexibility mediated by internal crossover density probed using a 32-helix DNA bundle demonstrates for the first time that our model not only predicts the 3D solution shape of complex DNA nanostructures but also their mechanical flexibility. Thus, our model represents an important advance in the quantitative understanding of DNA-based nanostructure shape and flexibility, and we anticipate that this model will increase significantly the number and variety of synthetic nanostructures designed using nucleic acids.en_US
dc.description.sponsorshipMIT Faculty Start-up Funden_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/nar/gkr1173en_US
dc.rightsCreative Commons Attribution Non-Commercial Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceNucleic Acids Researchen_US
dc.titleQuantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructuresen_US
dc.typeArticleen_US
dc.identifier.citationKim, D.-N., F. Kilchherr, H. Dietz, and M. Bathe. “Quantitative Prediction of 3D Solution Shape and Flexibility of Nucleic Acid Nanostructures.” Nucleic Acids Research 40, no. 7 (April 1, 2012): 2862–2868.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorKim, Do-Nyunen_US
dc.contributor.mitauthorBathe, Marken_US
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKim, D.-N.; Kilchherr, F.; Dietz, H.; Bathe, M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6199-6855
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record