MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First-principles quantum transport with electron-vibration interactions: A maximally localized Wannier functions approach

Author(s)
Kim, Sejoong; Marzari, Nicola
Thumbnail
DownloadKim-2013-First-principles quantum transport.pdf (2.308Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a first-principles approach for inelastic quantum transport calculations based on maximally localized Wannier functions. Electronic-structure properties are obtained from density-functional theory in a plane-wave basis, and electron-vibration coupling strengths and vibrational properties are determined with density-functional perturbation theory. Vibration-induced inelastic transport properties are calculated with nonequilibrium Green's function techniques; since these are based on a localized orbital representation we use maximally localized Wannier functions. Our formalism is applied first to investigate inelastic transport in a benzene molecular junction connected to monoatomic carbon chains. In this benchmark system the electron-vibration self-energy is calculated either in the self-consistent Born approximation or by lowest-order perturbation theory. It is observed that upward and downward conductance steps occur, which can be understood using multieigenchannel scattering theory and symmetry conditions. In a second example, where the monoatomic carbon chain electrode is replaced with a (3,3) carbon nanotube, we focus on the nonequilibrium vibration populations driven by the conducting electrons using a semiclassical rate equation and highlight and discuss in detail the appearance of vibrational cooling as a function of bias and the importance of matching the vibrational density of states of the conductor and the leads to minimize joule heating and breakdown.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/88698
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Kim, Sejoong, and Nicola Marzari. “First-Principles Quantum Transport with Electron-Vibration Interactions: A Maximally Localized Wannier Functions Approach.” Phys. Rev. B 87, no. 24 (June 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.