MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanisms for sub-gap optical conductivity in Herbertsmithite

Author(s)
Potter, Andrew C.; Lee, Patrick A.; Todadri, Senthil
Thumbnail
DownloadPotter-2013-Mechanisms for sub-gap optical.pdf (857.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Recent terahertz conductivity measurements observed low-power-law frequency dependence of optical conduction within the Mott gap of the kagome lattice spin-liquid candidate Herbertsmithite. We investigate mechanisms for this observed sub-gap conductivity for two possible scenarios in which the ground state is described by (1) a U(1) Dirac spin liquid with emergent fermionic spinons or (2) a nearly critical Z[subscript 2] spin liquid in the vicinity of a continuous quantum phase transition to magnetic order. We identify new mechanisms for optical absorption via magnetoelastic effects and spin-orbit coupling. In addition, for the Dirac spin liquid scenario, we establish an explicit microscopic origin for previously proposed absorption mechanisms based on slave-particle effective field theory descriptions.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/88721
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Potter, Andrew C., T. Senthil, and Patrick A. Lee. “Mechanisms for Sub-Gap Optical Conductivity in Herbertsmithite.” Phys. Rev. B 87, no. 24 (June 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.