MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bifurcation in entanglement renormalization group flow of a gapped spin model

Author(s)
Haah, Jeongwan
Thumbnail
DownloadHaah-2014-Bifurcation in entanglement.pdf (281.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study entanglement renormalization group transformations for the ground states of a spin model, called cubic code model H[subscript A] in three dimensions, in order to understand long-range entanglement structure. The cubic code model has degenerate and locally indistinguishable ground states under periodic boundary conditions. In the entanglement renormalization, one applies local unitary transformations on a state, called disentangling transformations, after which some of the spins are completely disentangled from the rest and then discarded. We find a disentangling unitary to establish equivalence of the ground state of H[subscript A] on a lattice of lattice spacing a to the tensor product of ground spaces of two independent Hamiltonians H[subscript A] and H[subscript B] on lattices of lattice spacing 2a. We further find a disentangling unitary for the ground space of H[subscript B] with the lattice spacing a to show that it decomposes into two copies of itself on the lattice of the lattice spacing 2a. The disentangling transformations yield a tensor network description for the ground state of the cubic code model. Using exact formulas for the degeneracy as a function of system size, we show that the two Hamiltonians H[subscript A] and H[subscript B] represent distinct phases of matter.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/88751
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Haah, Jeongwan. “Bifurcation in Entanglement Renormalization Group Flow of a Gapped Spin Model.” Phys. Rev. B 89, no. 7 (February 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.