Show simple item record

dc.contributor.authorNugraha, Ahmad R. T.
dc.contributor.authorRosenthal, E. I.
dc.contributor.authorHasdeo, Eddwi H.
dc.contributor.authorSanders, G. D.
dc.contributor.authorStanton, C. J.
dc.contributor.authorSaito, R.
dc.contributor.authorDresselhaus, Mildred
dc.date.accessioned2014-08-18T17:41:10Z
dc.date.available2014-08-18T17:41:10Z
dc.date.issued2013-08
dc.date.submitted2013-07
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.urihttp://hdl.handle.net/1721.1/88771
dc.description.abstractWe discuss how excitons can affect the generation of coherent radial breathing modes in the ultrafast spectroscopy of single-wall carbon nanotubes. Photoexcited excitons can be localized spatially and give rise to a spatially distributed driving force in real space which involves many phonon wave vectors of the exciton-phonon interaction. The equation of motion for the coherent phonons is modeled phenomenologically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a function of space and time. By averaging the calculated amplitudes per nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble the homogeneous oscillations that are observed in some pump-probe experiments. We interpret this result to mean that the experiments are only able to see a spatial average of coherent phonon oscillations over the wavelength of light in carbon nanotubes and the microscopic details are averaged out. Our interpretation is justified by calculating the time-dependent absorption spectra resulting from the macroscopic atomic displacements induced by the coherent phonon oscillations. The calculated coherent phonon spectra including excitonic effects show the experimentally observed symmetric peaks at the nanotube transition energies, in contrast to the asymmetric peaks that would be obtained if excitonic effects were not included.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Materials Research (Grant 1004147)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.88.075440en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleExcitonic effects on coherent phonon dynamics in single-wall carbon nanotubesen_US
dc.typeArticleen_US
dc.identifier.citationNugraha, A. R. T., E. I. Rosenthal, E. H. Hasdeo, G. D. Sanders, C. J. Stanton, M. S. Dresselhaus, and R. Saito. “Excitonic Effects on Coherent Phonon Dynamics in Single-Wall Carbon Nanotubes.” Phys. Rev. B 88, no. 7 (August 2013). © 2013 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorDresselhaus, Mildreden_US
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNugraha, A. R. T.; Rosenthal, E. I.; Hasdeo, E. H.; Sanders, G. D.; Stanton, C. J.; Dresselhaus, M. S.; Saito, R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8492-2261
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record