MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Signal/noise enhancement strategies for stochastically estimated correlation functions

Author(s)
Detmold, William; Endres, Michael G.
Thumbnail
DownloadPhysRevD.90.034503.pdf (10.83Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We develop strategies for enhancing the signal/noise ratio for stochastically sampled correlation functions. The techniques are general and offer a wide range of applicability. We demonstrate the potential of the approach with a generic two-state system and then explore the practical applicability of the method for single hadron correlators in lattice quantum chromodynamics. In the latter case, we determine the ground state energies of the pion, proton, and delta baryon, as well as the ground and first excited state energy of the rho meson using matrices of correlators computed on an exemplary ensemble of anisotropic gauge configurations. In the majority of cases, we find a modest reduction in the statistical uncertainties on extracted energies compared to conventional variational techniques. However, in the case of the delta baryon, we achieve a factor of 3 reduction in statistical uncertainties. The variety of outcomes achieved for single hadron correlators illustrates an inherent dependence of the method on the properties of the system under consideration and the operator basis from which the correlators are constructed.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/88968
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review D
Publisher
American Physical Society
Citation
Detmold, William, and Michael G. Endres. "Signal/noise enhancement strategies for stochastically estimated correlation functions." Phys. Rev. D 90, 034503 (August 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1550-7998
1550-2368

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.