MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Expanded identification and characterization of mammalian circular RNAs

Author(s)
Agarwal, Vikram; Guo, Huili; Guo, Junjie U.; Bartel, David
Thumbnail
Downloads13059-014-0409-z.pdf (1.824Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Background: The recent reports of two circular RNAs (circRNAs) with strong potential to act as microRNA (miRNA) sponges suggest that circRNAs might play important roles in regulating gene expression. However, the global properties of circRNAs are not well understood. Results: We developed a computational pipeline to identify circRNAs and quantify their relative abundance from RNA-seq data. Applying this pipeline to a large set of non-poly(A)-selected RNA-seq data from the ENCODE project, we annotated 7,112 human circRNAs that were estimated to comprise at least 10% of the transcripts accumulating from their loci. Most circRNAs are expressed in only a few cell types and at low abundance, but they are no more cell-type-specific than are mRNAs with similar overall expression levels. Although most circRNAs overlap protein-coding sequences, ribosome profiling provides no evidence for their translation. We also annotated 635 mouse circRNAs, and although 20% of them are orthologous to human circRNAs, the sequence conservation of these circRNA orthologs is no higher than that of their neighboring linear exons. The previously proposed miR-7 sponge, CDR1as, is one of only two circRNAs with more miRNA sites than expected by chance, with the next best miRNA-sponge candidate deriving from a gene encoding a primate-specific zinc-finger protein, ZNF91. Conclusions: Our results provide a new framework for future investigation of this intriguing topological isoform while raising doubts regarding a biological function of most circRNAs.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/88977
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Genome Biology
Publisher
BioMed Central Ltd
Citation
Guo, Junjie U, Vikram Agarwal, Huili Guo, and David P Bartel. "Expanded identification and characterization of mammalian circular RNAs." Genome Biology 2014, 15:409.
Version: Final published version
ISSN
1465-6906
1474-7596

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.