Unconditional Security of Time-Energy Entanglement Quantum Key Distribution Using Dual-Basis Interferometry
Author(s)
Zhang, Zheshen; Mower, Jacob; Wong, Franco N. C.; Shapiro, Jeffrey H.; Englund, Dirk Robert; Wong, Franco N. C.; ... Show more Show less
DownloadZhang-2014-Unconditional security.pdf (223.3Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data—obtained from Franson and conjugate-Franson interferometers—that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper’s Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700−bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.
Date issued
2014-03Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Zhang, Zheshen, Jacob Mower, Dirk Englund, Franco N. C. Wong, and Jeffrey H. Shapiro. “Unconditional Security of Time-Energy Entanglement Quantum Key Distribution Using Dual-Basis Interferometry.” Physical Review Letters 112, no. 12 (March 2014). © 2014 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114