MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Extraction of Tomographic Information via Randomized Benchmarking

Author(s)
Kimmel, Shelby; da Silva, Marcus P.; Ryan, Colm A.; Johnson, Blake R.; Ohki, Thomas A.
Thumbnail
DownloadKimmel-2014-Robust extraction.pdf (264.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We describe how randomized benchmarking can be used to reconstruct the unital part of any trace-preserving quantum map, which in turn is sufficient for the full characterization of any unitary evolution or, more generally, any unital trace-preserving evolution. This approach inherits randomized benchmarking’s robustness to preparation, measurement, and gate imperfections, thereby avoiding systematic errors caused by these imperfections. We also extend these techniques to efficiently estimate the average fidelity of a quantum map to unitary maps outside of the Clifford group. The unitaries we consider correspond to large circuits commonly used as building blocks to achieve scalable, universal, and fault-tolerant quantum computation. Hence, we can efficiently verify all such subcomponents of a circuit-based universal quantum computer. In addition, we rigorously bound the time and sampling complexities of randomized benchmarking procedures, proving that the required nonlinear estimation problem can be solved efficiently.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/89025
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Physical Review X
Publisher
American Physical Society
Citation
Kimmel, Shelby, Marcus P. da Silva, Colm A. Ryan, Blake R. Johnson, and Thomas Ohki. “Robust Extraction of Tomographic Information via Randomized Benchmarking.” Physical Review X 4, no. 1 (March 2014).
Version: Final published version
ISSN
2160-3308

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.