MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions

Author(s)
Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A.; ... Show more Show less
Thumbnail
DownloadLin-2014-Divergence of the long-wavelength.pdf (967.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report the results of experimental studies of the short-time–long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D[subscript e](q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D[subscript 0]: H(q) ≡ D[subscript e](q)S(q)/D[subscript 0]. We find an apparent divergence of H(q) as q → 0 with the form H(q)∝q[superscript −γ] (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0 we infer that D[subscript e](q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D[subscript e](q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D[subscript e](q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D[subscript e](q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q[superscript −1] as q → 0.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/89037
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Physical Review E
Publisher
American Physical Society
Citation
Lin, Binhua, Bianxiao Cui, Xinliang Xu, Ronen Zangi, Haim Diamant, and Stuart A. Rice. “Divergence of the Long-Wavelength Collective Diffusion Coefficient in Quasi-One- and Quasi-Two-Dimensional Colloidal Suspensions.” Phys. Rev. E 89, no. 2 (February 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1539-3755
1550-2376

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.