MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scorpion: Explaining Away Outliers in Aggregate Queries

Author(s)
Wu, Eugene; Madden, Samuel R.
Thumbnail
Downloadscorpion-vldb13.pdf (5.987Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Database users commonly explore large data sets by running aggregate queries that project the data down to a smaller number of points and dimensions, and visualizing the results. Often, such visualizations will reveal outliers that correspond to errors or surprising features of the input data set. Unfortunately, databases and visualization systems do not provide a way to work backwards from an outlier point to the common properties of the (possibly many) unaggregated input tuples that correspond to that outlier. We propose Scorpion, a system that takes a set of user-specified outlier points in an aggregate query result as input and finds predicates that explain the outliers in terms of properties of the input tuples that are used to compute the selected outlier results. Specifically, this explanation identifies predicates that, when applied to the input data, cause the outliers to disappear from the output. To find such predicates, we develop a notion of influence of a predicate on a given output, and design several algorithms that efficiently search for maximum influence predicates over the input data. We show that these algorithms can quickly find outliers in two real data sets (from a sensor deployment and a campaign finance data set), and run orders of magnitude faster than a naive search algorithm while providing comparable quality on a synthetic data set.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/89076
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the VLDB Endowment
Publisher
Association for Computing Machinery (ACM)
Citation
Eugene Wu and Samuel Madden. 2013. Scorpion: explaining away outliers in aggregate queries. Proc. VLDB Endow. 6, 8 (June 2013), 553-564.
Version: Author's final manuscript
ISSN
21508097

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.