Show simple item record

dc.contributor.authorWang, Cheng-Cai
dc.contributor.authorMao, Yun-Wei
dc.contributor.authorShan, Zhi-Wei
dc.contributor.authorDao, Ming
dc.contributor.authorLi, Ju
dc.contributor.authorMa, Evan
dc.contributor.authorSuresh, Subra
dc.contributor.authorSun, Jun, 1975-
dc.date.accessioned2014-08-29T13:50:48Z
dc.date.available2014-08-29T13:50:48Z
dc.date.issued2013-12
dc.date.submitted2013-09
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/89107
dc.description.abstractMetallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant NSF DMR-1240933)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1120901)en_US
dc.description.sponsorshipSingapore-MIT Allianceen_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1320235110en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleReal-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glassen_US
dc.typeArticleen_US
dc.identifier.citationWang, C.-C., Y.-W. Mao, Z.-W. Shan, M. Dao, J. Li, J. Sun, E. Ma, and S. Suresh. “Real-Time, High-Resolution Study of Nanocrystallization and Fatigue Cracking in a Cyclically Strained Metallic Glass.” Proceedings of the National Academy of Sciences 110, no. 49 (November 19, 2013): 19725–19730.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorDao, Mingen_US
dc.contributor.mitauthorLi, Juen_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, C.-C.; Mao, Y.-W.; Shan, Z.-W.; Dao, M.; Li, J.; Sun, J.; Ma, E.; Suresh, S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record