Weighing nanoparticles in solution at the attogram scale
Author(s)
Olcum, Selim; Cermak, Nathan; Wasserman, Steven Charles; Christine, Kathleen; Atsumi, Hiroshi; Payer, Kristofor Robert; Shen, Wenjiang; Lee, Jungchul; Belcher, Angela M.; Bhatia, Sangeeta N.; Manalis, Scott R.; ... Show more Show less
DownloadOlcum-2014-Weighing nanoparticl.pdf (1.166Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuum-level precision for samples in the aqueous environment and a noise equivalent mass resolution of 27 attograms in 1-kHz bandwidth was previously achieved by Lee et al. [(2010) Nano Lett 10(7):2537–2542]. Here, we report on a series of advancements that have improved the resolution by more than 30-fold, to 0.85 attograms in the same bandwidth, approaching the thermomechanical noise limit and enabling precise quantification of particles down to 10 nm with a throughput of more than 18,000 particles per hour. We demonstrate the potential of this capability by comparing the mass distributions of exosomes produced by different cell types and by characterizing the yield of self-assembled DNA nanoparticle structures.
Date issued
2014-01Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Microsystems Technology Laboratories; Koch Institute for Integrative Cancer Research at MITJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Olcum, S., N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, et al. “Weighing Nanoparticles in Solution at the Attogram Scale.” Proceedings of the National Academy of Sciences 111, no. 4 (January 28, 2014): 1310–1315.
Version: Final published version
ISSN
0027-8424
1091-6490