Direct Numerical Investigation of Turbulence of Capillary Waves
Author(s)
Pan, Yulin; Yue, Dick K. P.; Yue, Dick K. P.
DownloadPhysRevLett.113.094501.pdf (1.235Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We consider the inertial range spectrum of capillary wave turbulence. Under the assumptions of weak turbulence, the theoretical surface elevation spectrum scales with wave number k as I[subscript η] ∼ k[superscript α], where α = α[subscript 0] = -19/4, energy (density) flux P as P[superscript 1/2]. The proportional factor C, known as the Kolmogorov constant, has a theoretical value of C = C[subscript 0] = 9.85 (we show that this value holds only after a formulation in the original derivation is corrected). The k[superscript -19/4] scaling has been extensively, but not conclusively, tested; the P[superscript 1/2] scaling has been investigated experimentally, but until recently remains controversial, while direct confirmation of the value of C[subscript 0] remains elusive. We conduct a direct numerical investigation implementing the primitive Euler equations. For sufficiently high nonlinearity, the theoretical k[superscript -19/4] and P[superscript 1/2] scalings as well as value of C[subscript 0] are well recovered by our numerical results. For a given number of numerical modes N, as nonlinearity decreases, the long-time spectra deviate from theoretical predictions with respect to scaling with P, with calculated values of α < α[subscript 0] and C > C[subscript 0], all due to finite box effect.
Date issued
2014-08Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Pan, Yulin, and Dick K. P. Yue. "Direct Numerical Investigation of Turbulence of Capillary Waves." Phys. Rev. Lett. 113, 094501 (August 2014). © 2014 American Physical Society
Version: Author's final manuscript
ISSN
0031-9007
1079-7114