MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct Numerical Investigation of Turbulence of Capillary Waves

Author(s)
Pan, Yulin; Yue, Dick K. P.; Yue, Dick K. P.
Thumbnail
DownloadPhysRevLett.113.094501.pdf (1.235Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We consider the inertial range spectrum of capillary wave turbulence. Under the assumptions of weak turbulence, the theoretical surface elevation spectrum scales with wave number k as I[subscript η] ∼ k[superscript α], where α = α[subscript 0] = -19/4, energy (density) flux P as P[superscript 1/2]. The proportional factor C, known as the Kolmogorov constant, has a theoretical value of C = C[subscript 0] = 9.85 (we show that this value holds only after a formulation in the original derivation is corrected). The k[superscript -19/4] scaling has been extensively, but not conclusively, tested; the P[superscript 1/2] scaling has been investigated experimentally, but until recently remains controversial, while direct confirmation of the value of C[subscript 0] remains elusive. We conduct a direct numerical investigation implementing the primitive Euler equations. For sufficiently high nonlinearity, the theoretical k[superscript -19/4] and P[superscript 1/2] scalings as well as value of C[subscript 0] are well recovered by our numerical results. For a given number of numerical modes N, as nonlinearity decreases, the long-time spectra deviate from theoretical predictions with respect to scaling with P, with calculated values of α < α[subscript 0] and C > C[subscript 0], all due to finite box effect.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/89142
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Pan, Yulin, and Dick K. P. Yue. "Direct Numerical Investigation of Turbulence of Capillary Waves." Phys. Rev. Lett. 113, 094501 (August 2014). © 2014 American Physical Society
Version: Author's final manuscript
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.