Show simple item record

dc.contributor.authorGarimella, Sarvesh
dc.contributor.authorHuang, Y.-W.
dc.contributor.authorSeewald, J. S.
dc.contributor.authorCziczo, Daniel James
dc.date.accessioned2014-09-03T21:03:51Z
dc.date.available2014-09-03T21:03:51Z
dc.date.issued2014-06
dc.date.submitted2014-03
dc.identifier.issn1680-7324
dc.identifier.urihttp://hdl.handle.net/1721.1/89166
dc.description.abstractThis study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel–Halsey–Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-KT is likely a result of the dissolution and redistribution of soluble material. (2) Wet generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.en_US
dc.description.sponsorshipUnited States. National Oceanic and Atmospheric Administration. Climate Program Office (award number NA11OAR4310159)en_US
dc.language.isoen_US
dc.publisherCopernicus GmbH on behalf of the European Geosciences Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-14-6003-2014en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceCopernicus Publicationsen_US
dc.titleCloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble materialen_US
dc.typeArticleen_US
dc.identifier.citationGarimella, S., Y.-W. Huang, J. S. Seewald, and D. J. Cziczo. “Cloud Condensation Nucleus Activity Comparison of Dry- and Wet-Generated Mineral Dust Aerosol: The Significance of Soluble Material.” Atmospheric Chemistry and Physics 14, no. 12 (June 18, 2014): 6003–6019.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorGarimella, Sarveshen_US
dc.contributor.mitauthorHuang, Y.-W.en_US
dc.contributor.mitauthorCziczo, Daniel Jamesen_US
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGarimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1851-8740
dc.identifier.orcidhttps://orcid.org/0000-0002-0828-8286
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record