dc.contributor.author | Siegrist, M. Sloan | |
dc.contributor.author | Steigedal, Magnus | |
dc.contributor.author | Ahmad, Rushdy | |
dc.contributor.author | Mehra, Alka | |
dc.contributor.author | Dragset, Marte S. | |
dc.contributor.author | Schuster, Brian M. | |
dc.contributor.author | Philips, Jennifer A. | |
dc.contributor.author | Rubin, Eric J. | |
dc.contributor.author | Carr, Steven A | |
dc.date.accessioned | 2014-09-04T14:27:25Z | |
dc.date.available | 2014-09-04T14:27:25Z | |
dc.date.issued | 2014-05 | |
dc.date.submitted | 2014-03 | |
dc.identifier.issn | 2150-7511 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/89168 | |
dc.description.abstract | The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. | en_US |
dc.description.sponsorship | Broad Institute of MIT and Harvard | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIH/NIAID grant 1P01 AI074805-01A1) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIH/NIAID grant 1R01 AI087682-01A1) | en_US |
dc.description.sponsorship | Doris Duke Charitable Foundation (Clinical Scientist Development Award) | en_US |
dc.description.sponsorship | Research Council of Norway (grant 220836/H10) | en_US |
dc.description.sponsorship | Research Council of Norway (grant 223255/F50) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Society for Microbiology | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1128/mBio.01073-14 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0 | en_US |
dc.source | American Society for Microbiology | en_US |
dc.title | Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Siegrist, M. S., M. Steigedal, R. Ahmad, A. Mehra, M. S. Dragset, B. M. Schuster, J. A. Philips, S. A. Carr, and E. J. Rubin. “Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition.” mBio 5, no. 3 (May 6, 2014): e01073–14–e01073–14. | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.mitauthor | Carr, Steven A. | en_US |
dc.relation.journal | mBio | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Siegrist, M. S.; Steigedal, M.; Ahmad, R.; Mehra, A.; Dragset, M. S.; Schuster, B. M.; Philips, J. A.; Carr, S. A.; Rubin, E. J. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7203-4299 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |