Show simple item record

dc.contributor.authorZhao, Boyang
dc.contributor.authorPritchard, Justin R.
dc.contributor.authorHemann, Michael
dc.contributor.authorLauffenburger, Douglas A
dc.date.accessioned2014-09-04T19:37:06Z
dc.date.available2014-09-04T19:37:06Z
dc.date.issued2013-12
dc.date.submitted2013-12
dc.identifier.issn2159-8274
dc.identifier.issn2159-8290
dc.identifier.urihttp://hdl.handle.net/1721.1/89180
dc.description.abstractRecent tumor sequencing data suggest an urgent need to develop a methodology to directly address intratumoral heterogeneity in the design of anticancer treatment regimens. We use RNA interference to model heterogeneous tumors, and demonstrate successful validation of computational predictions for how optimized drug combinations can yield superior effects on these tumors both in vitro and in vivo. Importantly, we discover here that for many such tumors knowledge of the predominant subpopulation is insufficient for determining the best drug combination. Surprisingly, in some cases, the optimal drug combination does not include drugs that would treat any particular subpopulation most effectively, challenging straightforward intuition. We confirm examples of such a case with survival studies in a murine preclinical lymphoma model. Altogether, our approach provides new insights about design principles for combination therapy in the context of intratumoral diversity, data that should inform the development of drug regimens superior for complex tumors.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (NCI Integrative Cancer Biology Program (ICBP), Grant U54-CA112967-06)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/National Institute of General Medical Sciences (NIGMS) Interdepartmental Biotechnology Training Program, 5T32GM008334)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Koch Institute Support (core) Grant P30-CA14051)en_US
dc.language.isoen_US
dc.publisherAmerican Association for Cancer Researchen_US
dc.relation.isversionofhttp://dx.doi.org/10.1158/2159-8290.cd-13-0465en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleAddressing Genetic Tumor Heterogeneity through Computationally Predictive Combination Therapyen_US
dc.typeArticleen_US
dc.identifier.citationZhao, B., J. R. Pritchard, D. A. Lauffenburger, and M. T. Hemann. “Addressing Genetic Tumor Heterogeneity through Computationally Predictive Combination Therapy.” Cancer Discovery 4, no. 2 (December 6, 2013): 166–174.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorZhao, Boyangen_US
dc.contributor.mitauthorPritchard, Justin R.en_US
dc.contributor.mitauthorLauffenburger, Douglas A.en_US
dc.contributor.mitauthorHemann, Michaelen_US
dc.relation.journalCancer Discoveryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhao, B.; Pritchard, J. R.; Lauffenburger, D. A.; Hemann, M. T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4610-1707
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record