MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping our universe in 3D with MITEoR

Author(s)
Tegmark, Max Erik; Buza, Victor; Dillon, Joshua Shane; Gharibyan, Hrant; Kunz, Eben A.; Liu, Adrian Chi-Yan; Losh, Jonathan L.; Lutomirksi, Andy; Morrison, Scott D.; Narayanan, Sruthi A.; Perko, Ashley; Rosner, Devon; Sanchez, Nevada; Schutz, Katelin; Tribiano, Shana; Valdez, Michael; Zelko, Ioana; Zheng, Kevin; Ewall-Wice, Aaron Michael; Matejek, Michael Scott; Morgan, Edward H.; Neben, Abraham Richard; Pan, Qinxuan; Penna, Robert; Su, Meng; Villasenor, Joel; Williams, Christopher Leigh; Yang, Hung-I; Zhu, Yan; Zheng, Haoxuan, Ph. D. Massachusetts Institute of Technology; ... Show more Show less
Thumbnail
DownloadTegmark_Mapping our.pdf (3.580Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N[superscript 2] to N log N, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which incorporates many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/89207
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Zheng, Haoxuan, Max Tegmark, Victor Buza, Josh Dillon, Hrant Gharibyan, Jack Hickish, Eben Kunz, et al. “Mapping Our Universe in 3D with MITEoR.” 2013 IEEE International Symposium on Phased Array Systems and Technology (October 2013).
Version: Original manuscript
ISBN
978-1-4673-1127-4
978-1-4673-1126-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.