Show simple item record

dc.contributor.authorWinn, Joshua Nathan
dc.contributor.authorSchlaufman, Kevin C
dc.date.accessioned2014-09-05T17:40:38Z
dc.date.available2014-09-05T17:40:38Z
dc.date.issued2013-07
dc.date.submitted2013-03
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://hdl.handle.net/1721.1/89209
dc.description.abstractTidal transfer of angular momentum is expected to cause hot Jupiters to spiral into their host stars. Although the timescale for orbital decay is very uncertain, it should be faster for systems with larger and more evolved stars. Indeed, it is well established that hot Jupiters are found less frequently around subgiant stars than around main-sequence stars. However, the interpretation of this finding has been ambiguous, because the subgiants are also thought to be more massive than the F- and G-type stars that dominate the main-sequence sample. Consequently, it has been unclear whether the absence of hot Jupiters is due to tidal destruction or inhibited formation of those planets around massive stars. Here we show that the Galactic space motions of the planet-hosting subgiant stars demand that on average they be similar in mass to the planet-hosting main-sequence F- and G-type stars. Therefore the two samples are likely to differ only in age, and provide a glimpse of the same exoplanet population both before and after tidal evolution. As a result, the lack of hot Jupiters orbiting subgiants is clear evidence for their tidal destruction. Questions remain, though, about the interpretation of other reported differences between the planet populations around subgiants and main-sequence stars, such as their period and eccentricity distributions and overall occurrence rates.en_US
dc.description.sponsorshipKavli Institute for Astrophysics and Space Research (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0004-637X/772/2/143en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEVIDENCE FOR THE TIDAL DESTRUCTION OF HOT JUPITERS BY SUBGIANT STARSen_US
dc.typeArticleen_US
dc.identifier.citationSchlaufman, Kevin C., and Joshua N. Winn. “EVIDENCE FOR THE TIDAL DESTRUCTION OF HOT JUPITERS BY SUBGIANT STARS.” The Astrophysical Journal 772, no. 2 (July 17, 2013): 143.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorSchlaufman, Kevin C.en_US
dc.contributor.mitauthorWinn, Joshua Nathanen_US
dc.relation.journalThe Astrophysical Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSchlaufman, Kevin C.; Winn, Joshua N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5761-6779
dc.identifier.orcidhttps://orcid.org/0000-0002-4265-047X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record