MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling

Author(s)
Umesh, Vaibhavi; Rape, Andrew D.; Ulrich, Theresa A.; Kumar, Sanjay
Thumbnail
DownloadUmesh-2014-Microenvironmental s.pdf (520.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/89234
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
Umesh, Vaibhavi, Andrew D. Rape, Theresa A. Ulrich, and Sanjay Kumar. “Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling.” Edited by Adam J. Engler. PLoS ONE 9, no. 7 (July 7, 2014): e101771.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.