MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

Author(s)
Sanders, J. G.; Beinart, R. A.; Stewart, F. J.; Delong, Edward; Girguis, P. R.; DeLong, Edward Francis; ... Show more Show less
Thumbnail
DownloadDeLong_Metatranscriptomics.pdf (1.347Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts’ metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts’ interaction with regional-scale differences in geochemistry.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/89405
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Parsons Laboratory for Environmental Science and Engineering (Massachusetts Institute of Technology)
Journal
ISME Journal
Publisher
Nature Publishing Group
Citation
Sanders, J G, R A Beinart, F J Stewart, E F Delong, and P R Girguis. “Metatranscriptomics Reveal Differences in in Situ Energy and Nitrogen Metabolism Among Hydrothermal Vent Snail Symbionts.” ISME J 7, no. 8 (April 25, 2013): 1556–1567.
Version: Final published version
ISSN
1751-7362
1751-7370

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.