Show simple item record

dc.contributor.authorSinha, Subarna
dc.contributor.authorTsang, Emily K.
dc.contributor.authorZeng, Haoyang
dc.contributor.authorMeister, Michela
dc.contributor.authorDill, David L.
dc.date.accessioned2014-09-12T15:08:58Z
dc.date.available2014-09-12T15:08:58Z
dc.date.issued2014-07
dc.date.submitted2013-11
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/89458
dc.description.abstractBoolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray​/TCGANetworks/.en_US
dc.description.sponsorshipStanford University (Chinese Undergraduate Visiting Research Program)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0102119en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePublic Library of Scienceen_US
dc.titleMining TCGA Data Using Boolean Implicationsen_US
dc.typeArticleen_US
dc.identifier.citationSinha, Subarna, Emily K. Tsang, Haoyang Zeng, Michela Meister, and David L. Dill. “Mining TCGA Data Using Boolean Implications.” Edited by Vladimir B. Bajic. PLoS ONE 9, no. 7 (July 23, 2014): e102119.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorZeng, Haoyangen_US
dc.relation.journalPLoS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSinha, Subarna; Tsang, Emily K.; Zeng, Haoyang; Meister, Michela; Dill, David L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1057-2865
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record