Show simple item record

dc.contributor.authorYang, Yingxiang
dc.contributor.authorHerrera-Yague, Carlos
dc.contributor.authorEagle, Nathan N.
dc.contributor.authorGonzalez, Marta C.
dc.date.accessioned2014-09-12T17:57:40Z
dc.date.available2014-09-12T17:57:40Z
dc.date.issued2014-07
dc.date.submitted2014-03
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/89471
dc.description.abstractThe estimation of commuting flows at different spatial scales is a fundamental problem for different areas of study. Many current methods rely on parameters requiring calibration from empirical trip volumes. Their values are often not generalizable to cases without calibration data. To solve this problem we develop a statistical expression to calculate commuting trips with a quantitative functional form to estimate the model parameter when empirical trip data is not available. We calculate commuting trip volumes at scales from within a city to an entire country, introducing a scaling parameter α to the recently proposed parameter free radiation model. The model requires only widely available population and facility density distributions. The parameter can be interpreted as the influence of the region scale and the degree of heterogeneity in the facility distribution. We explore in detail the scaling limitations of this problem, namely under which conditions the proposed model can be applied without trip data for calibration. On the other hand, when empirical trip data is available, we show that the proposed model's estimation accuracy is as good as other existing models. We validated the model in different regions in the U.S., then successfully applied it in three different countries.en_US
dc.description.sponsorshipNew England University Transportation Center (Year 23 Grant)en_US
dc.description.sponsorshipSolomon Buchsbaum AT&T Research Funden_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep05662en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleLimits of Predictability in Commuting Flows in the Absence of Data for Calibrationen_US
dc.typeArticleen_US
dc.identifier.citationYang, Yingxiang, Carlos Herrera, Nathan Eagle, and Marta C. Gonzalez. “Limits of Predictability in Commuting Flows in the Absence of Data for Calibration.” Sci. Rep. 4 (July 11, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.mitauthorYang, Yingxiangen_US
dc.contributor.mitauthorGonzalez, Marta C.en_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYang, Yingxiang; Herrera, Carlos; Eagle, Nathan; Gonzalez, Marta C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8482-0318
dc.identifier.orcidhttps://orcid.org/0000-0001-9618-1384
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record