Show simple item record

dc.contributor.authorLiu, Dangzheng
dc.contributor.authorSun, Xin
dc.contributor.authorWang, Zhengdong
dc.date.accessioned2014-09-15T15:53:40Z
dc.date.available2014-09-15T15:53:40Z
dc.date.issued2012-11
dc.date.submitted2012-05
dc.identifier.issn1083-6489
dc.identifier.urihttp://hdl.handle.net/1721.1/89526
dc.description.abstractConsider random symmetric Toeplitz matrices Tn=(ai−j)[superscript n]i,j=1 with matrix entries aj,j=0,1,2,⋯, being independent real random variables such that E[aj]=0, E[|aj|2]=1 for j=0,1,2,⋯, (homogeneity of 4-th moments) κ=E[|aj|4], and further (uniform boundedness) supj≥0E[|aj|k]=Ck<∞ for k≥3. Under the assumption of a0≡0, we prove a central limit theorem for linear statistics of eigenvalues for a fixed polynomial with degree at least 2. Without this assumption, the CLT can be easily modified to a possibly non-normal limit law. In a special case where aj's are Gaussian, the result has been obtained by Chatterjee for some test functions. Our derivation is based on a simple trace formula for Toeplitz matrices and fine combinatorial analysis. Our method can apply to other related random matrix models, including Hermitian Toeplitz and symmetric Hankel matrices. Since Toeplitz matrices are quite different from Wigner and Wishart matrices, our results enrich this topic.en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant # 11171005)en_US
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/EJP.v17-2006en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourceInstitute of Mathematical Statisticsen_US
dc.titleFluctuations of eigenvalues for random Toeplitz and related matricesen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Dangzheng, Xin Sun, and Zhengdong Wang. “Fluctuations of Eigenvalues for Random Toeplitz and Related Matrices.” Electronic Journal of Probability 17, no. 0 (January 1, 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSun, Xinen_US
dc.relation.journalElectronic Journal of Probabilityen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLiu, Dangzheng; Sun, Xin; Wang, Zhengdongen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8579-1686
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record