Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorOlshanski, Grigori
dc.date.accessioned2014-09-15T17:04:12Z
dc.date.available2014-09-15T17:04:12Z
dc.date.issued2013-08
dc.date.submitted2013-07
dc.identifier.issn1083-6489
dc.identifier.urihttp://hdl.handle.net/1721.1/89530
dc.description.abstractThe Thoma cone is an infinite-dimensional locally compact space, which is closely related to the space of extremal characters of the infinite symmetric group S[subscript ∞]. In another context, the Thoma cone appears as the set of parameters for totally positive, upper triangular Toeplitz matrices of infinite size. The purpose of the paper is to construct a family {X[superscript (z,z′)]} of continuous time Markov processes on the Thoma cone, depending on two continuous parameters z and z′. Our construction largely exploits specific properties of the Thoma cone related to its representation-theoretic origin, although we do not use representations directly. On the other hand, we were inspired by analogies with random matrix theory coming from models of Markov dynamics related to orthogonal polynomial ensembles. We show that processes X[superscript (z,z′)] possess a number of nice properties, namely: (1) every X[superscript (z,z′)] is a Feller process; (2) the infinitesimal generator of X[superscript (z,z′)], its spectrum, and the eigenfunctions admit an explicit description; (3) in the equilibrium regime, the finite-dimensional distributions of X[superscript (z,z′)] can be interpreted as (the laws of) infinite-particle systems with determinantal correlations; (4) the corresponding time-dependent correlation kernel admits an explicit expression, and its structure is similar to that of time-dependent correlation kernels appearing in random matrix theory.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/EJP.v18-2729en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceInstitute of Mathematical Statisticsen_US
dc.titleMarkov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particlesen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Grigori Olshanski. “Markov Dynamics on the Thoma Cone: a Model of Time-Dependent Determinantal Processes with Infinitely Many Particles.” Electronic Journal of Probability 18, no. 0 (January 4, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexeien_US
dc.relation.journalElectronic Journal of Probabilityen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBorodin, Alexei; Olshanski, Grigorien_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record