A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites
Author(s)
Chen, Jeffrey J.; Sorelli, Luca; Vandamme, Matthieu; Ulm, Franz-Josef; Chanvillard, Gilles
DownloadUlm_A coupled.pdf (931.3Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Alternative title
A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca(OH)2 Nanocomposites
Terms of use
Metadata
Show full item recordAbstract
A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation point. Because finite element and Monte-Carlo simulations showed that the microvolumes probed by each method are of comparable size (approximately 2 μm), the mechanical information provided by nanoindentation was directly comparable to the chemical information provided by SEM-EDS. This coupled approach provided the opportunity to determine whether the local indentation response was a result of a single- or a multiphase response—the latter being shown predominant in the highly concentrated w/c=0.20 hydrated cement paste. Results indicate that, in the selected microvolumes where C–S–H and nanoscale Ca(OH)2 (CH) are present, increasing fractions of CH increase the local indentation modulus (and hardness), yielding values above those reported for high-density (HD) C–S–H. Micromechanical analyses show that C–S–H and CH are associated, not merely as a simple biphase mixture, but as an intimate nanocomposite where nanoscale CH reinforces C–S–H by partially filling the latter's gel pores. The paper discusses the mechanism of forming the C–S–H/CH nanocomposite, as well as the impact of nanocomposites on various macroscopic properties of concrete (e.g., shrinkage, expansion). On a general level, this study illustrates how a coupled nanoindentation/X-ray microanalysis/micromechanics approach can provide otherwise inaccessible information on the nanomechanical properties of highly heterogeneous composites with intermixing at length scales smaller than the stress field in a nanoindentation experiment.
Date issued
2010-02Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Journal of the American Ceramic Society
Publisher
John Wiley & Sons, Inc/American Ceramic Society
Citation
Chen, Jeffrey J., Luca Sorelli, Matthieu Vandamme, Franz-Josef Ulm, and Gilles Chanvillard. “ A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites .” Journal of the American Ceramic Society (February 2010).
Version: Author's final manuscript
ISSN
00027820
15512916