MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites

Author(s)
Chen, Jeffrey J.; Sorelli, Luca; Vandamme, Matthieu; Ulm, Franz-Josef; Chanvillard, Gilles
Thumbnail
DownloadUlm_A coupled.pdf (931.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Alternative title
A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca(OH)2 Nanocomposites
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation point. Because finite element and Monte-Carlo simulations showed that the microvolumes probed by each method are of comparable size (approximately 2 μm), the mechanical information provided by nanoindentation was directly comparable to the chemical information provided by SEM-EDS. This coupled approach provided the opportunity to determine whether the local indentation response was a result of a single- or a multiphase response—the latter being shown predominant in the highly concentrated w/c=0.20 hydrated cement paste. Results indicate that, in the selected microvolumes where C–S–H and nanoscale Ca(OH)2 (CH) are present, increasing fractions of CH increase the local indentation modulus (and hardness), yielding values above those reported for high-density (HD) C–S–H. Micromechanical analyses show that C–S–H and CH are associated, not merely as a simple biphase mixture, but as an intimate nanocomposite where nanoscale CH reinforces C–S–H by partially filling the latter's gel pores. The paper discusses the mechanism of forming the C–S–H/CH nanocomposite, as well as the impact of nanocomposites on various macroscopic properties of concrete (e.g., shrinkage, expansion). On a general level, this study illustrates how a coupled nanoindentation/X-ray microanalysis/micromechanics approach can provide otherwise inaccessible information on the nanomechanical properties of highly heterogeneous composites with intermixing at length scales smaller than the stress field in a nanoindentation experiment.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/89645
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of the American Ceramic Society
Publisher
John Wiley & Sons, Inc/American Ceramic Society
Citation
Chen, Jeffrey J., Luca Sorelli, Matthieu Vandamme, Franz-Josef Ulm, and Gilles Chanvillard. “ A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites .” Journal of the American Ceramic Society (February 2010).
Version: Author's final manuscript
ISSN
00027820
15512916

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.