Show simple item record

dc.contributor.authorSharei, Armon Reza
dc.contributor.authorCho, Nahyun
dc.contributor.authorMao, Shirley
dc.contributor.authorJackson, Emily L.
dc.contributor.authorPoceviciute, Roberta
dc.contributor.authorZoldan, Janet
dc.contributor.authorLanger, Robert
dc.contributor.authorJensen, Klavs F.
dc.contributor.authorAdamo, Andrea, 1975-
dc.date.accessioned2014-09-16T16:52:10Z
dc.date.available2014-09-16T16:52:10Z
dc.date.issued2013-11
dc.identifier.issn1940-087X
dc.identifier.urihttp://hdl.handle.net/1721.1/89648
dc.description.abstractRapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This technology has shown potential in addressing previously challenging applications; including, delivery to primary immune cells, cell reprogramming, carbon nanotube, and quantum dot delivery. This vector-free microfluidic platform relies on mechanical disruption of the cell membrane to facilitate cytosolic delivery of the target material. Herein, we describe the detailed method of use for these microfluidic devices including, device assembly, cell preparation, and system operation. This delivery approach requires a brief optimization of device type and operating conditions for previously unreported applications. The provided instructions are generalizable to most cell types and delivery materials as this system does not require specialized buffers or chemical modification/conjugation steps. This work also provides recommendations on how to improve device performance and trouble-shoot potential issues related to clogging, low delivery efficiencies, and cell viability.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant RC1 EB011187-02)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant DE013023)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant DE016516)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant EB000351)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (P30-CA14051)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Core grant MPP-09Call-Langer-60)en_US
dc.language.isoen_US
dc.publisherMyJoVE Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3791/50980en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMyJoVE Corporationen_US
dc.titleCell Squeezing as a Robust, Microfluidic Intracellular Delivery Platformen_US
dc.typeArticleen_US
dc.identifier.citationSharei, Armon, Nahyun Cho, Shirley Mao, Emily Jackson, Roberta Poceviciute, Andrea Adamo, Janet Zoldan, Robert Langer, and Klavs F Jensen. “Cell Squeezing as a Robust, Microfluidic Intracellular Delivery Platform.” JoVE no. 81 (November 7, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorSharei, Armon Rezaen_US
dc.contributor.mitauthorCho, Nahyunen_US
dc.contributor.mitauthorMao, Shirleyen_US
dc.contributor.mitauthorJackson, Emily L.en_US
dc.contributor.mitauthorPoceviciute, Robertaen_US
dc.contributor.mitauthorAdamo, Andreaen_US
dc.contributor.mitauthorZoldan, Janeten_US
dc.contributor.mitauthorLanger, Roberten_US
dc.contributor.mitauthorJensen, Klavs F.en_US
dc.relation.journalJournal of Visualized Experimentsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSharei, Armon; Cho, Nahyun; Mao, Shirley; Jackson, Emily; Poceviciute, Roberta; Adamo, Andrea; Zoldan, Janet; Langer, Robert; Jensen, Klavs Fen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7192-580X
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record