Show simple item record

dc.contributor.authorTingley, Peter William
dc.date.accessioned2014-09-16T19:28:15Z
dc.date.available2014-09-16T19:28:15Z
dc.date.issued2010-04
dc.date.submitted2010-04
dc.identifier.issn18150659
dc.identifier.urihttp://hdl.handle.net/1721.1/89652
dc.description.abstractRecently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ[subscript 0]) for [^ over sl][subscript n], where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0902649)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences of Ukraine (SIGMA (Symmetry, Integrability, and Geometry: Methods and Application))en_US
dc.relation.isversionofhttp://dx.doi.org/10.3842/sigma.2010.035en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.sourceNational Academy of Sciences of Ukraineen_US
dc.titleMonomial Crystals and Partition Crystalsen_US
dc.typeArticleen_US
dc.identifier.citationTingley, Peter. “Monomial Crystals and Partition Crystals.” SIGMA (April 21, 2010).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorTingley, Peter Williamen_US
dc.relation.journalSymmetry, Integrability and Geometry: Methods and Applicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTingley, Peteren_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record