Show simple item record

dc.contributor.authorMonks, Maria
dc.date.accessioned2014-09-18T16:13:50Z
dc.date.available2014-09-18T16:13:50Z
dc.date.issued2009-02
dc.date.submitted2008-07
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/89803
dc.description.abstractThe ith cycle minor of a permutation p of the set {1,2,…,n} is the permutation formed by deleting an entry i from the decomposition of p into disjoint cycles and reducing each remaining entry larger than i by 1. In this paper, we show that any permutation of {1,2,…,n} can be reconstructed from its set of cycle minors if and only if n≥6. We then use this to provide an alternate proof of a known result on a related reconstruction problem.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0447070-001)en_US
dc.description.sponsorshipUnited States. National Security Agency (Grant H98230-06-1-0013)en_US
dc.language.isoen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r19en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElectronic Journal of Combinatoricsen_US
dc.titleReconstructing Permutations from Cycle Minorsen_US
dc.typeArticleen_US
dc.identifier.citationMonks, Maria. "Reconstructing Permutations from Cycle Minors." Electronic Journal of Combinatorics, Volume 16, Issue 1 (2009).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMonks, Mariaen_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMonks, Mariaen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record