MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trees with an On-Line Degree Ramsey Number of Four

Author(s)
Rolnick, David S.
Thumbnail
DownloadRolnick-2011-Trees with an on-line.pdf (728.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
On-line Ramsey theory studies a graph-building game between two players. The player called Builder builds edges one at a time, and the player called Painter paints each new edge red or blue after it is built. The graph constructed is called the background graph. Builder's goal is to cause the background graph to contain a monochromatic copy of a given goal graph, and Painter's goal is to prevent this. In the S[subscript k]-game variant of the typical game, the background graph is constrained to have maximum degree no greater than k. The on-line degree Ramsey number [˚over R][subscript Δ](G) of a graph G is the minimum k such that Builder wins an S[subscript k]-game in which G is the goal graph. Butterfield et al. previously determined all graphs G satisfying [˚ over R][subscript Δ](G)≤3. We provide a complete classification of trees T satisfying [˚ over R][subscript Δ](T)=4.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/89807
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Electronic Journal of Combinatorics
Publisher
Electronic Journal of Combinatorics
Citation
Rolnick, David. "Trees with an On-Line Degree Ramsey Number of Four." Electronic Journal of Combinatorics, Volume 18, Issue 1 (2011).
Version: Final published version
ISSN
1077-8926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.