MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Finite Calculus Approach to Ehrhart Polynomials

Author(s)
Sam, Steven V.; Woods, Kevin M.
Thumbnail
DownloadSam-2010-Finite calculus approach.pdf (139.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A rational polytope is the convex hull of a finite set of points in R[superscript d] with rational coordinates. Given a rational polytope P⊆R[superscript d], Ehrhart proved that, for t∈Z≥[subscript 0[, the function #(tP∩Z[superscript d]) agrees with a quasi-polynomial L[subscript P](t), called the Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial can be regarded as a discrete version of the volume of a polytope. We use that analogy to derive a new proof of Ehrhart's theorem. This proof also allows us to quickly prove two other facts about Ehrhart quasi-polynomials: McMullen's theorem about the periodicity of the individual coefficients of the quasi-polynomial and the Ehrhart–Macdonald theorem on reciprocity.
Date issued
2010-04
URI
http://hdl.handle.net/1721.1/89809
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Electronic Journal of Combinatorics
Publisher
Electronic Journal of Combinatorics
Citation
Sam, Steven V., and Kevin M. Woods. "A Finite Calculus Approach to Ehrhart Polynomials." Electronic Journal of Combinatorics, Volume 17 (2010).
Version: Final published version
ISSN
1077-8926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.