Show simple item record

dc.contributor.authorStanley, Richard P.
dc.date.accessioned2014-09-18T17:05:11Z
dc.date.available2014-09-18T17:05:11Z
dc.date.issued2011-07
dc.date.submitted2011-02
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/89811
dc.description.abstractThis paper contains two results on the number f[superscript σ/τ] of standard skew Young tableaux of shape σ/τ. The first concerns generating functions for certain classes of "periodic" shapes related to work of Gessel-Viennot and Baryshnikov-Romik. The second result gives an evaluation of the skew Schur function s[subscript λ/μ](x) at x = (1,1/2[superscript 2k],1/3[superscript 2k],…) for k = 1,2,3 in terms of f[superscript σ/τ] for a certain skew shape σ/τ depending on λ/μ.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 0604423)en_US
dc.language.isoen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i2p16en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElectronic Journal of Combinatoricsen_US
dc.titleTwo Remarks on Skew Tableauxen_US
dc.typeArticleen_US
dc.identifier.citationStanley, Richard P. "Two Remarks on Skew Tableaux." Electronic Journal of Combinatorics, Volume 18, Issue 2 (2011-2).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStanley, Richard P.en_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsStanley, Richard P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record