MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New Spectral Bounds on the Chromatic Number Encompassing all Eigenvalues of the Adjacency Matrix

Author(s)
Wocjan, Pawel; Elphick, Clive
Thumbnail
DownloadWocjan-2013-New spectral bounds.pdf (327.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The purpose of this article is to improve existing lower bounds on the chromatic number χ. Let μ[subscript 1],…,μ[subscript n] be the eigenvalues of the adjacency matrix sorted in non-increasing order. First, we prove the lower bound χ ≥ 1 + max[subscript m]{∑[m over i=1]μ[subscript i]/ − ∑[m over i=1]μ[subscript n−i+1]} for m = 1,…,n − 1. This generalizes the Hoffman lower bound which only involves the maximum and minimum eigenvalues, i.e., the case m = 1. We provide several examples for which the new bound exceeds the Hoffman lower bound. Second, we conjecture the lower bound χ ≥ 1 + s[superscript +/s[superscript −], where s[superscript +] and s[superscript −] are the sums of the squares of positive and negative eigenvalues, respectively. To corroborate this conjecture, we prove the bound χ ≥ s[superscript +]/s[superscript −]. We show that the conjectured lower bound is true for several families of graphs. We also performed various searches for a counter-example, but none was found. Our proofs rely on a new technique of considering a family of conjugates of the adjacency matrix, which add to the zero matrix, and use majorization of spectra of self-adjoint matrices. We also show that the above bounds are actually lower bounds on the normalized orthogonal rank of a graph, which is always less than or equal to the chromatic number. The normalized orthogonal rank is the minimum dimension making it possible to assign vectors with entries of modulus one to the vertices such that two such vectors are orthogonal if the corresponding vertices are connected. All these bounds are also valid when we replace the adjacency matrix A by W ∗ A where W is an arbitrary self-adjoint matrix and ∗ denotes the Schur product, that is, entrywise product of W and A.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/89814
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Mathematics
Journal
Electronic Journal of Combinatorics
Publisher
Electronic Journal of Combinatorics
Citation
Wocjan, Pawel, and Clive Elphick. "New Spectral Bounds on the Chromatic Number Encompassing all Eigenvalues of the Adjacency Matrix." Electronic Journal of Combinatorics, Volume 20, Issue 3 (2013).
Version: Final published version
ISSN
1077-8926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.