Buckling-induced encapsulation of structured elastic shells under pressure
Author(s)
Shim, Jongmin; Chen, Elizabeth R.; Bertoldi, Katia; Reis, Pedro Miguel; Perdigou, Claude
DownloadReis_Buckling-induced.pdf (2.657Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We introduce a class of continuum shell structures, the Buckliball, which undergoes a structural transformation induced by buckling under pressure loading. The geometry of the Buckliball comprises a spherical shell patterned with a regular array of circular voids. In order for the pattern transformation to be induced by buckling, the possible number and arrangement of these voids are found to be restricted to five specific configurations. Below a critical internal pressure, the narrow ligaments between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads to closure of the voids and a reduction of the total volume of the shell by up to 54%, while remaining spherical, thereby opening the possibility of encapsulation. We use a combination of precision desktop-scale experiments, finite element simulations, and scaling analyses to explore the underlying mechanics of these foldable structures, finding excellent qualitative and quantitative agreement. Given that this folding mechanism is induced by a mechanical instability, our Buckliball opens the possibility for reversible encapsulation, over a wide range of length scales.
Date issued
2012-03Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Shim, J., C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. “Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure.” Proceedings of the National Academy of Sciences 109, no. 16 (March 26, 2012): 5978–5983.
Version: Final published version
ISSN
0027-8424
1091-6490