Show simple item record

dc.contributor.authorLozano-Perez, Tomas
dc.contributor.authorWong, Lok Sang Lawson
dc.contributor.authorKaelbling, Leslie P.
dc.date.accessioned2014-09-22T18:57:20Z
dc.date.available2014-09-22T18:57:20Z
dc.date.issued2012-05
dc.identifier.isbn978-1-4673-1405-3
dc.identifier.isbn978-1-4673-1403-9
dc.identifier.isbn978-1-4673-1578-4
dc.identifier.isbn978-1-4673-1404-6
dc.identifier.urihttp://hdl.handle.net/1721.1/90272
dc.description.abstractIn state estimation, we often want the maximum likelihood estimate of the current state. For the commonly used joint multivariate Gaussian distribution over the state space, this can be efficiently found using a Kalman filter. However, in complex environments the state space is often highly constrained. For example, for objects within a refrigerator, they cannot interpenetrate each other or the refrigerator walls. The multivariate Gaussian is unconstrained over the state space and cannot incorporate these constraints. In particular, the state estimate returned by the unconstrained distribution may itself be infeasible. Instead, we solve a related constrained optimization problem to find a good feasible state estimate. We illustrate this for estimating collision-free configurations for objects resting stably on a 2-D surface, and demonstrate its utility in a real robot perception domain.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 019868)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant AOARD-104135)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2012.6225309en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleCollision-free state estimationen_US
dc.typeArticleen_US
dc.identifier.citationWong, Lawson L.S., Leslie Pack Kaelbling, and Tomas Lozano-Perez. “Collision-Free State Estimation.” 2012 IEEE International Conference on Robotics and Automation (May 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWong, Lok Sang Lawsonen_US
dc.contributor.mitauthorKaelbling, Leslie P.en_US
dc.contributor.mitauthorLozano-Perez, Tomasen_US
dc.relation.journalProceedings of the 2012 IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWong, Lawson L.S.; Kaelbling, Leslie Pack; Lozano-Perez, Tomasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9944-7587
dc.identifier.orcidhttps://orcid.org/0000-0002-8657-2450
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record