dc.contributor.author | Hadfield-Menell, Dylan | |
dc.contributor.author | Lozano-Perez, Tomas | |
dc.contributor.author | Kaelbling, Leslie P. | |
dc.date.accessioned | 2014-09-22T19:06:59Z | |
dc.date.available | 2014-09-22T19:06:59Z | |
dc.date.issued | 2013-05 | |
dc.identifier.isbn | 978-1-4673-5643-5 | |
dc.identifier.isbn | 978-1-4673-5641-1 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/90273 | |
dc.description.abstract | For robots to effectively interact with the real world, they will need to perform complex tasks over long time horizons. This is a daunting challenge, but recent advances using hierarchical planning have been able to provide leverage on this problem. Unfortunately, this approach makes no effort to account for the execution cost of an abstract plan and often arrives at poor quality plans. This paper outlines a method for dynamically improving a hierarchical plan during execution. We frame the underlying question as one of evaluating the resource needs of an abstract operator and propose a general way to approach estimating them. We ran experiments in challenging domains and observed up to 30% reduction in execution cost when compared with a standard hierarchical planner. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant 1117325) | en_US |
dc.description.sponsorship | United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (Grant FA2386-10-1-4135) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ICRA.2013.6631225 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Optimization in the now: Dynamic peephole optimization for hierarchical planning | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hadfield-Menell, Dylan, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “Optimization in the Now: Dynamic Peephole Optimization for Hierarchical Planning.” 2013 IEEE International Conference on Robotics and Automation (May 2013). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Hadfield-Menell, Dylan | en_US |
dc.contributor.mitauthor | Kaelbling, Leslie P. | en_US |
dc.contributor.mitauthor | Lozano-Perez, Tomas | en_US |
dc.relation.journal | Proceedings of the 2013 IEEE International Conference on Robotics and Automation | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Hadfield-Menell, Dylan; Kaelbling, Leslie Pack; Lozano-Perez, Tomas | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8657-2450 | |
dc.identifier.orcid | https://orcid.org/0000-0001-6054-7145 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |