Asynchronous failure detectors
Author(s)
Cornejo Collado, Alex; Lynch, Nancy Ann; Sastry, Srikanth
DownloadLynch_Asynchronous failure.pdf (220.2Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Failure detectors - oracles that provide information about process crashes - are an important abstraction for crash tolerance in distributed systems. Although current failure-detector theory provides great generality and expressiveness, it also poses significant challenges in developing a robust hierarchy of failure detectors. We address some of these challenges by proposing a variant of failure detectors called asynchronous failure detectors and an associated modeling framework. Unlike the traditional failure-detector framework, our framework eschews real time completely. We show that asynchronous failure detectors are sufficiently expressive to include several popular failure detectors. Additionally, we show that asynchronous failure detectors satisfy many desirable properties: they are self-implementable, guarantee that stronger asynchronous failure detectors solve more problems, and ensure that their outputs encode no information other than process crashes. We introduce the notion of a failure detector being representative of a problem to capture the idea that some problems encode the same information about process crashes as their weakest failure detectors do. We show that a large class of problems, called finite problems, do not have representative failure detectors.
Date issued
2012-07Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the 2012 ACM symposium on Principles of distributed computing - PODC '12
Publisher
Association for Computing Machinery
Citation
Conrejo, Alejandro, Nancy Lynch, and Srikanth Sastry. “Asynchronous Failure Detectors.” Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing - PODC ’12 (2012), July 16–18, 2012, Madeira, Portugal. ACM New York, NY, USA. p.243-252.
Version: Author's final manuscript
ISBN
9781450314503