dc.contributor.author | Mohseni, Masoud | |
dc.contributor.author | Lloyd, Seth | |
dc.contributor.author | Rebentrost, Frank Patrick | |
dc.date.accessioned | 2014-09-26T14:53:32Z | |
dc.date.available | 2014-09-26T14:53:32Z | |
dc.date.issued | 2014-09 | |
dc.date.submitted | 2014-02 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issn | 1079-7114 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/90391 | |
dc.description.abstract | Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix. | en_US |
dc.description.sponsorship | United States. Defense Advanced Research Projects Agency | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research | en_US |
dc.description.sponsorship | Google-NASA Quantum Artificial Intelligence Laboratory | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevLett.113.130503 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Physical Society | en_US |
dc.title | Quantum Support Vector Machine for Big Data Classification | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum Support Vector Machine for Big Data Classification." Phys. Rev. Lett. 113, 130503 (September 2014). © 2014 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Rebentrost, Frank Patrick | en_US |
dc.contributor.mitauthor | Lloyd, Seth | en_US |
dc.relation.journal | Physical Review Letters | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2014-09-25T22:00:02Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | American Physical Society | |
dspace.orderedauthors | Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-6728-8163 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |