Show simple item record

dc.contributor.authorMohseni, Masoud
dc.contributor.authorLloyd, Seth
dc.contributor.authorRebentrost, Frank Patrick
dc.date.accessioned2014-09-26T14:53:32Z
dc.date.available2014-09-26T14:53:32Z
dc.date.issued2014-09
dc.date.submitted2014-02
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/90391
dc.description.abstractSupervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipGoogle-NASA Quantum Artificial Intelligence Laboratoryen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.113.130503en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleQuantum Support Vector Machine for Big Data Classificationen_US
dc.typeArticleen_US
dc.identifier.citationRebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum Support Vector Machine for Big Data Classification." Phys. Rev. Lett. 113, 130503 (September 2014). © 2014 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorRebentrost, Frank Patricken_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2014-09-25T22:00:02Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsRebentrost, Patrick; Mohseni, Masoud; Lloyd, Sethen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6728-8163
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record